1,676 research outputs found

    Berry phase theory of planar Hall effect in Topological Insulators

    Full text link
    Negative longitudinal magnetoresistance, in the presence of an external magnetic field parallel to the direction of an applied current, has recently been experimentally verified in Weyl semimetals and topological insulators in the bulk conduction limit. The appearance of negative longitudinal magnetoresistance in topological semimetals is understood as an effect of chiral anomaly, whereas it is not well-defined in topological insulators. Another intriguing phenomenon, planar Hall effect - appearance of a transverse voltage in the plane of applied co-planar electric and magnetic fields not perfectly aligned to each other, a configuration in which the conventional Hall effect vanishes, has recently been suggested to exist in Weyl semimetals. In this paper we present a quasi-classical theory of planar Hall effect of a three-dimensional topological insulator in the bulk conduction limit. Starting from Boltzmann transport equations we derive the expressions for planar Hall conductivity and longitudinal magnetoconductivity in topological insulators and show the important roles played by the orbital magnetic moment for the appearance of planar Hall effect. Our theoretical results predict specific experimental signatures for topological insulators that can be directly checked in experiments.Comment: 18 pages, 3 figure

    Mirror anomaly and anomalous Hall effect in type-I Dirac semimetals

    Full text link
    In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly, close analogue to the parity anomaly of (2+12+1)-dimensional massive Dirac fermions. The observable response of such anomaly is manifested in a singular step-like anomalous Hall response across the mirror-symmetric plane in the presence of a magnetic field. Although this result seems to be valid in type-II Dirac semimetals (strictly speaking, in the linearized theory), we find that type-I Dirac semimetals do not possess such an anomaly in anomalous Hall response even at the level of the linearized theory. In particular, we show that the anomalous Hall response continuously approaches zero as one approaches the mirror symmetric angle in a type-I Dirac semimetal as opposed to the singular Hall response in a type-II Dirac semimetal. Moreover, we show that, under certain condition, the anomalous Hall response may vanish in a linearized type-I Dirac semimetal, even in the presence of time reversal symmetry breaking.Comment: 6 pages, 5 figure

    Solar activity forecast with a dynamo model

    Get PDF
    Although systematic measurements of the solar polar magnetic field exist only from mid 1970s, other proxies can be used to infer the polar field at earlier times. The observational data indicate a strong correlation between the polar field at a sunspot minimum and the strength of the next cycle, although the strength of the cycle is not correlated well with the polar field produced at its end. This suggests that the Babcock Leighton mechanism of poloidal field generation from decaying sunspots involves randomness, whereas the other aspects of the dynamo process must be reasonably ordered and deterministic. Only if the magnetic diffusivity within the convection zone is assumed to be high, we can explain the correlation between the polar field at a minimum and the next cycle. We give several independent arguments that the diffusivity must be of this order. In a dynamo model with diffusivity like this, the poloidal field generated at the mid latitudes is advected toward the poles by the meridional circulation and simultaneously diffuses towards the tachocline, where the toroidal field for the next cycle is produced. To model actual solar cycles with a dynamo model having such high diffusivity, we have to feed the observational data of the poloidal field at the minimum into the theoretical model. We develop a method of doing this in a systematic way. Our model predicts that cycle 24 will be a very weak cycle. Hemispheric asymmetry of solar activity is also calculated with our model and compared with observational data.Comment: 17 pages, 18 figures, submitted to MNRA

    Self-Similarity and Scaling Exponent for DNA Walk Model in Two and Four Dimensions

    Get PDF
    corecore